Home
Search results “Water covalent or hydrogen bonds”
Hydrogen bonding in water | Water, acids, and bases | Biology | Khan Academy
 
06:47
Reactants and products in reversible and irreversible chemical reactions. Watch the next lesson: https://www.khanacademy.org/science/biology/water-acids-and-bases/hydrogen-bonding-in-water/v/hydrogen-bonding-in-water?utm_source=YT&utm_medium=Desc&utm_campaign=biology Missed the previous lesson? https://www.khanacademy.org/science/biology/chemistry--of-life/chemical-bonds-and-reactions/v/intermolecular-forces-and-molecular-bonds?utm_source=YT&utm_medium=Desc&utm_campaign=biology Biology on Khan Academy: Life is beautiful! From atoms to cells, from genes to proteins, from populations to ecosystems, biology is the study of the fascinating and intricate systems that make life possible. Dive in to learn more about the many branches of biology and why they are exciting and important. Covers topics seen in a high school or first-year college biology course. About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy's Biology channel: https://www.youtube.com/channel/UC82qE46vcTn7lP4tK_RHhdg?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 255216 Khan Academy
How Does Water Bond - Covalent Bonds | Chemistry for All | FuseSchool
 
02:40
Learn the basics about the covalent bonding of water, when learning about covalent bonding within properties of matter. Water is made from one oxygen atom and two hydrogens. The oxygen has 6 electrons in its outer shell, but it really wants to have 8 to have a full shell. The hydrogens have one outer shell electron, but want to have two. The atoms share their electrons, forming covalent bonds. So all three atoms have full outer shells, and create a water molecule. Water has two covalent bonds. In water, the bonding electrons spend most of their time nearer the oxygen atom, because it is more ELECTRONEGATIVE. This means that it is electron withdrawing. As the negatively charged electrons are nearer the oxygen atom, the oxygen atom becomes a little bit negative itself, while the hydrogens become a little positive. This is called delta positive and delta negative. Water doesn’t just have any old covalent bonds; it has what we call POLAR COVALENT bonds and is a POLAR molecule. This is really important as it affects how water behaves and reacts with other elements. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Polar Bonds and Hydrogen Bonds
 
02:38
Simple explanation of polar covalent bonds and hydrogen bonds. Find more free tutorials, videos and readings for the science classroom at ricochetscience.com
Views: 55071 RicochetScience
Ionic and Covalent Bonds, Hydrogen Bonds, van der Waals - 4 types of Chemical Bonds in Biology
 
08:50
There are four types of chemical bonds essential for life to exist: Ionic Bonds, Covalent Bonds, Hydrogen Bonds, and van der Waals interactions. We need all of these different kinds of bonds to play various roles in biochemical interactions. These bonds vary in their strengths. In Chemistry, we think of Ionic Bonds and Covalent bonds as having an overlapping range of strengths. But remember, in biochemistry, everything is happening in the context of water. This means Ionic bonds tend to dissociate in water. Thus, we will think of these bonds in the following order (strongest to weakest): Covalent, Ionic, Hydrogen, and van der Waals. Also note that in Chemistry, the weakest bonds are more commonly referred to as “dispersion forces.” Related Chemistry video: Ionic Bonds vs Covalent Bonds http://bit.ly/2cUG6C8 Our series on Biology is aimed at the first-year college level, including pre-med students. These videos should also be helpful for students in challenging high school biology courses. Perfect for preparing for the AP Biology exam or the Biology SAT. Also appropriate for advanced homeschoolers. You can also follow along if you are just curious, and would like to know more about this fascinating subject. ***** Our current biology textbook recommendation is Campbell Biology from Pearson. 10th edition Amazon Link: http://amzn.to/2mahQTi 11th edition Amazon Link: http://amzn.to/2m7xU6w Amazon Used Textbooks - Save up to 90% http://amzn.to/2pllk4B For lighter reading, we recommend: I Contain Multitudes: The Microbes Within Us and a Grander View of Life by Ed Yong http://amzn.to/2pLOddQ Lab Girl by Hope Jahren http://amzn.to/2oMolPg ***** This video was made possible by the generous donations of our Patrons on Patreon. We dedicate this video to our VIP Patron, Vishal Shah. We’re so thankful for your support! ***** Please Subscribe so you'll hear about our newest videos! http://bit.ly/1ixuu9W If you found this video helpful, please give it a "thumbs up" and share it with your friends! If you'd like to support more great educational videos from Socratica, please consider becoming our Patron on Patreon! https://www.patreon.com/socratica ***** Written and Produced by Kimberly Hatch Harrison About our instructor: Kimberly Hatch Harrison received degrees in Biology and English Literature from Caltech before working in pharmaceuticals research, developing drugs for autoimmune disorders. She then continued her studies in Molecular Biology (focusing on Immunology and Neurobiology) at Princeton University, where she began teaching as a graduate student. Her success in teaching convinced her to leave the glamorous world of biology research and turn to teaching full-time, accepting a position at an exclusive prep school, where she taught biology and chemistry for eight years. She is now the head writer and producer of Socratica Studios. ****** Creative Commons Picture Credits: Salt crystals https://en.wikipedia.org/wiki/File:Halit-Kristalle.jpg Author: W.J. Pilsak Hydrogen Bonding in water https://en.wikipedia.org/wiki/File:3D_model_hydrogen_bonds_in_water.svg Author: Qwerter Products in this video: Preparing for the Biology AP* Exam (School Edition) (Pearson Education Test Prep) - http://amzn.to/2qJVbxm Cracking the AP Biology Exam, 2017 Edition: Proven Techniques to Help You Score a 5 (College Test Preparation) - http://amzn.to/2qB3NsZ Cracking the SAT Biology E/M Subject Test, 15th Edition (College Test Preparation) - http://amzn.to/2qJIfHN
Views: 29486 Socratica
Properties of Water | Hydrogen Bonding in Water | Biology | Biochemistry
 
12:37
Why is water essential for Life to exist on Earth? We are about 60% water - and there are some organisms that are as much as 90% water! What is so important about water? How does it support life? In this video, we discuss the special properties of water that make it the “Solvent of Life.” Chief among these properties is the extensive Hydrogen Bonding between water molecules that make water an extremely cohesive liquid (the molecules stick together). Due to the extensive hydrogen bonding, water has some emergent properties that impact life on Earth in many ways. These include: Cohesion Adhesion High surface tension High specific heat High heat of vaporization Ice Floats (Ice is less dense as a solid than liquid water) For each of these properties, we discuss how they impact living creatures on Earth. ❀❀❀❀❀❀❀❀❀❀ Our series on Biology is aimed at the first-year college level, including pre-med students. These videos should also be helpful for students in challenging high school biology courses. Perfect for preparing for the AP Biology exam or the Biology SAT. Also appropriate for advanced homeschoolers. You can also follow along if you are just curious, and would like to know more about this fascinating subject. Our current biology textbook recommendation is Campbell Biology from Pearson. 10th edition Amazon Link: http://amzn.to/2mahQTi 11th edition Amazon Link: http://amzn.to/2m7xU6w Shop Amazon Used Textbooks - Save up to 90% http://amzn.to/2pllk4B For lighter reading, we recommend: I Contain Multitudes: The Microbes Within Us and a Grander View of Life by Ed Yong http://amzn.to/2pLOddQ Lab Girl by Hope Jahren http://amzn.to/2oMolPg ❀❀❀❀❀❀❀❀❀❀ This video was made possible by the generous donations of our Patrons on Patreon! We dedicate this video to our VIP Patron, Tracy Karin Prell. Tracy is an amazing advocate for science communication. Thank you so much, Tracy! ❀❀❀❀❀❀❀❀❀❀ Please Subscribe so you'll hear about our newest videos! http://bit.ly/1ixuu9W If you found this video helpful, please give it a "thumbs up" and share it with your friends! If you'd like to support more great educational videos from Socratica, please consider becoming our Patron on Patreon! https://www.patreon.com/socratica ❀❀❀❀❀❀❀❀❀❀ Directed by Michael Harrison Written and Produced by Kimberly Hatch Harrison About our instructor: Kimberly Hatch Harrison received degrees in Biology and English Literature from Caltech before working in pharmaceuticals research, developing drugs for autoimmune disorders. She then continued her studies in Molecular Biology (focusing on Immunology and Neurobiology) at Princeton University, where she began teaching as a graduate student. Her success in teaching convinced her to leave the glamorous world of biology research and turn to teaching full-time, accepting a position at an exclusive prep school, where she taught biology and chemistry for eight years. She is now the head writer and producer of Socratica Studios. ❀❀❀❀❀❀❀❀❀❀ Creative Commons Picture Credits Basilisk running on water https://en.wikipedia.org/wiki/File:Basiliscus_basiliscus_running_on_water_-_pone.0037300.s001.ogv Author: Minetti et al. xylem http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089934 Author: Boutilier et al 2014 PLOS Meniscus http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050320 Author: Jingmin et al 2012 PLOS Little girl drinking https://pixabay.com/en/girl-thirsty-drink-fountain-water-2241750/ Author: brisch27 Army scout drinking https://pixabay.com/en/girl-scout-army-thirsty-sensuality-932421/ Author: AdinaVoicu Water drop Macro View http://www.publicdomainpictures.net/view-image.php?image=173836&picture=water-drop-macro-view Author: JeanBeauford Woman in the Ocean http://www.publicdomainpictures.net/view-image.php?image=172525&picture=woman-in-the-ocean Author: JeanBeauford Water on fabric https://en.wikipedia.org/wiki/File:Water_droplet_lying_on_a_damask.jpg Author: Petar Milosevic Water strider https://en.wikipedia.org/wiki/File:WaterstriderEnWiki.jpg Author: PD Polar bear on ice https://en.wikipedia.org/wiki/File:Polar_Bear_AdF.jpg Author: Arturo de Frias Marques Penguins on ice https://en.wikipedia.org/wiki/File:Pygoscelis_antarctica_trying_to_get_to_iceberg.wmv.ogv Author: Brocken Inaglory Cells (colourized) https://pixabay.com/en/white-blood-cell-cell-blood-cell-543471 Author: skeeze Hydrogen bonds in water https://en.wikipedia.org/wiki/File:3D_model_hydrogen_bonds_in_water.svg Author: Qwerter Water strider footage https://en.wikipedia.org/wiki/File:Vesimittareita.ogv Author: Uusijani roadrunner https://en.wikipedia.org/wiki/File:The_Greater_Roadrunner_Walking.jpg Author: Jessie Eastland Partially frozen pond http://www.publicdomainpictures.net/view-image.php?image=15079&picture=partially-frozen-pond Author: David Wagner
Views: 14520 Socratica
Water - Liquid Awesome: Crash Course Biology #2
 
11:17
Hank teaches us why water is one of the most fascinating and important substances in the universe. Follow SciShow on Twitter: http://www.twitter.com/scishow Like SciShow on Facebook: http://www.facebook.com/scishow Review: Re-watch = 00:00 Introduction = 00:42 Molecular structure & hydrogen bonds = 01:38 Cohesion & surface tension = 02:46 Adhesion = 03:31 Hydrophilic substances = 04:42 Hydrophobic substances = 05:14 Henry Cavendish = 05:49 Ice Density = 07:45 Heat Capacity = 09:10 Crash Course Biology is now available on DVD! http://dftba.com/product/1av/CrashCourse-Biology-The-Complete-Series-DVD-Set Citations: http://www.extension.umn.edu/distribution/youthdevelopment/components/0328-02.html http://www.uni.edu/~iowawet/H2OProperties.html http://www.hometrainingtools.com/properties-water-science-teaching-tip/a/1274/ http://science.howstuffworks.com/environmental/earth/geophysics/h2o7.htm http://www.robinsonlibrary.com/science/chemistry/biography/cavendish.htm http://chemistry.mtu.edu/~pcharles/SCIHISTORY/HenryCavendish.html http://www.nndb.com/people/030/000083778/ http://www.notablebiographies.com/Ca-Ch/Cavendish-Henry.html TAGS: water, hydrogen, oxygen, molecule, covalent bond, cohesion, adhesion, polarity, hydrogen bond, surface tension, capillary action, hydrophilic, hydrophobic, ionic bond, ion, universal solvent, henry cavendish, chemistry, specific gravity, density, heat capacity, evaporation, biology, crashcourse, crash course, hank green Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 2930521 CrashCourse
3.1 - Water Structure and Hydrogen Bonding
 
03:07
Basic chemical structure of a water molecule
Views: 169795 gmcd1985
Covalent, ionic and hydrogen bonds
 
17:07
I do not own any of the videos. I just pieced them together solely for educational purposes.
Views: 3662 Rob Archibald
Intermolecular Forces - Hydrogen Bonding, Dipole-Dipole, Ion-Dipole, London Dispersion Interactions
 
45:36
This chemistry video tutorial focuses on intermolecular forces such hydrogen bonding, ion-ion interactions, dipole dipole, ion dipole, london dispersion forces and van deer waal forces. It contains plenty of examples and practice problems to help you understand the most important concepts related to this material. General Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&list=PL0o_zxa4K1BV-uX6wXQgyqZXvRd0tUUV0&index=3 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/ Here is a list of topics: 1. Ion - Ion dipole interactions of KF and CaO 2. Electrostatic Force and Lattice Energy- The effect of charge and ionic radii or size 3. How To Determine Which Ionic Compound has a Higher Melting Point - NaF vs KCl 4. Ion-Dipole Interactions - NaCl and H2O 5. Definition of a Dipole - Polar Molecules & Charge Separation 6. Dipole-Dipole Interactions of Polar Molecules - Partial Charge Electrostatic Attractions of CO 7. Hydrogen Bonding between Hydrogen, Nitrogen, Oxygen, and Fluorine 8. Intermolecular Forces vs Intramolecular Forces 9. Hydrogen Bonding vs Polar & Nonpolar Covalent Bonds 10. London Dispersion Forces & Van Der Waals Forces 11. Permanent Dipoles and Temporary Induced Dipoles - Distribution of electrons in electron cloud 12. Difference Between Atoms and Ions - Cations vs Anions - Number of Electrons and Protons 13. The relationship between Polarizability and Dispersion Forces 14. How To Determine the Strongest Intermolecular Forces In Compounds Such as MgO, KCl, H2O, CH4, CO2, SO2, HF, CH3OH, LiCl, CH2O, CO, and I2 15. The relationship between Boiling Point and Vapor Pressure 16. Straight Chained vs Branched Alkanes - Boiling Point and Intermolecular Forces - Surface Area 17. Ranking Boiling Point In Order of Increasing Strength for I2, Br2, F2, and Cl2 18. Polar and Nonpolar Organic Compounds - Polarity and Water Solubility 19. Ranking Boiling In Decreasing Order For HF, HCl, HBr, and HI 20. The effect of Molar Mass and Number of electrons on the Overall Intermolecular Force / LDF
Atomic Hook-Ups - Types of Chemical Bonds: Crash Course Chemistry #22
 
09:46
Atoms are a lot like us - we call their relationships "bonds," and there are many different types. Each kind of atomic relationship requires a different type of energy, but they all do best when they settle into the lowest stress situation possible. The nature of the bond between atoms is related to the distance between them and, like people, it also depends on how positive or negative they are. Unlike with human relationships, we can analyze exactly what makes chemical relationships work, and that's what this episode is all about. If you are paying attention, you will learn that chemical bonds form in order to minimize the energy difference between two atoms or ions; that those chemical bonds may be covalent if atoms share electrons, and that covalent bonds can share those electrons evenly or unevenly; that bonds can also be ionic if the electrons are transferred instead of shared: and how to calculate the energy transferred in an ionic bond using Coulomb's Law. -- Table of Contents Bonds Minimize Energy 01:38 Covalent Bonds 03:18 Ionic Bonds 05:37 Coulomb's Law 05:51 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 1587195 CrashCourse
Hydrogen Bonding and Common Mistakes
 
09:00
To see all my Chemistry videos, check out http://socratic.org/chemistry Hydrogen bonding can be so confusing, and in this video we talk about some common mistakes. Hydrogen bonds are intermolecular forces between molecules. They form because one atom has a high electronegativity, so it gets a partial negative charge, and the hydrogen gets a partial positive charge.
Views: 501976 Tyler DeWitt
Properties of Water
 
06:51
Explore some properties of water with the Amoeba Sisters! It's all about those hydrogen bonds. Video has handout: http://www.amoebasisters.com/handouts Terms discussed include adhesion, cohesion, surface tension, specific heat - all made possible by those amazing hydrogen bonds. Support us on Patreon! http://www.patreon.com/amoebasisters Our FREE resources: GIFs: http://www.amoebasisters.com/gifs.html Handouts: http://www.amoebasisters.com/handouts.html Comics: http://www.amoebasisters.com/parameciumparlorcomics Connect with us! Website: http://www.AmoebaSisters.com Twitter: http://www.twitter.com/AmoebaSisters Facebook: http://www.facebook.com/AmoebaSisters Tumblr: http://www.amoebasisters.tumblr.com Pinterest: http://www.pinterest.com/AmoebaSister­s Instagram: https://www.instagram.com/amoebasistersofficial/ Visit our Redbubble store at http://www.amoebasisters.com/store.html The Amoeba Sisters videos demystify science with humor and relevance. The videos center on Pinky's certification and experience in teaching science at the high school level. Pinky's teacher certification is in grades 4-8 science and 8-12 composite science (encompassing biology, chemistry, and physics). Amoeba Sisters videos only cover concepts that Pinky is certified to teach, and they focus on her specialty: secondary life science. For more information about The Amoeba Sisters, visit: http://www.amoebasisters.com/about-us.html We cover the basics in biology concepts at the secondary level. If you are looking to discover more about biology and go into depth beyond these basics, our recommended reference is the FREE, peer reviewed, open source OpenStax biology textbook: https://openstax.org/details/books/biology *We mention that water makes up "3/4 of the Earth's surface" and we wish we had said "nearly" This number is going to be an estimate, but here is a source that puts it around 71%. https://water.usgs.gov/edu/earthhowmuch.html We take pride in our AWESOME community, and we welcome feedback and discussion. However, please remember that this is an education channel. See YouTube's community guidelines https://www.youtube.com/yt/policyandsafety/communityguidelines.html and YouTube's policy center https://support.google.com/youtube/topic/2676378?hl=en&ref_topic=6151248. We also reserve the right to remove comments with vulgar language. Music is this video is listed free to use/no attribution required from the YouTube audio library https://www.youtube.com/audiolibrary/music?feature=blog We have YouTube's community contributed subtitles feature on to allow translations for different languages. YouTube automatically credits the different language contributors below (unless the contributor had opted out of being credited). We are thankful for those that contribute different languages. If you have a concern about community contributed contributions, please contact us.
Views: 611005 Amoeba Sisters
Covalent Bonds, Hydrogen Bonds | MIT 7.01SC Fundamentals of Biology
 
22:25
Covalent Bonds, Hydrogen Bonds Instructor: Graham Walker View the complete course: http://ocw.mit.edu/7-01SCF11 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu
Views: 28684 MIT OpenCourseWare
Polar & Non-Polar Molecules: Crash Course Chemistry #23
 
10:46
*** PLEASE WATCH WITH ANNOTATIONS ON! SOME INACCURACIES IN GRAPHICS ARE NOTED AND CORRECTED IN ANNOTATIONS. THANKS! *** Molecules come in infinite varieties, so in order to help the complicated chemical world make a little more sense, we classify and categorize them. One of the most important of those classifications is whether a molecule is polar or non-polar, which describes a kind of symmetry - not just of the molecule, but of the charge. In this edition of Crash Course Chemistry, Hank comes out for Team Polar, and describes why these molecules are so interesting to him. You'll learn that molecules need to have both charge asymmetry and geometric asymmetry to be polar, and that charge asymmetry is caused by a difference in electronegativities. You'll also learn how to notate a dipole moment (or charge separation) of a molecule, the physical mechanism behind like dissolves like, and why water is so dang good at fostering life on Earth. -- Table of Contents Charge Assymetry & Geometric Asymmetry 01:33 Difference in Electronegatives 01:49 Hank is Team Polar 00:33 Dipole Moment 03:49 Charge Separation of a Molecule 04:12 Like Dissolves Like 04:41 Water is Awesome 05:10 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 2173800 CrashCourse
Hydrogen Bonding
 
11:22
This chemistry video tutorial explains how to determine which molecules are capable of exhibiting hydrogen bonding. Examples and practice problems include the following molecules: H2O, CH4, CH3F, HF, CH3OH, CH3OCH3, CH3COOH, CH3CHO, H2S, NH3, PH3, (CH3)3N, (CH3)2NH, C2H4, C2H2, HOCH2CH2OH, CH3SH, and CH3CONH2. This video also discusses the difference between a hydrogen bond and a covalent bond and the difference between an intermolecular bond and an intramolecular bond. it shows the formation and hydrogen bonding that occurs between water molecules.
The Chemical Bond: Covalent vs. Ionic and Polar vs. Nonpolar
 
03:33
Ionic Bond, Covalent Bond, James Bond, so many bonds! What dictates which kind of bond will form? Electronegativity values, of course. Let's go through each type and what they're all about. Subscribe: http://bit.ly/ProfDaveSubscribe [email protected] http://patreon.com/ProfessorDaveExplains http://professordaveexplains.com http://facebook.com/ProfessorDaveExpl... http://twitter.com/DaveExplains General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem Classical Physics Tutorials: http://bit.ly/ProfDavePhysics1 Modern Physics Tutorials: http://bit.ly/ProfDavePhysics2 Mathematics Tutorials: http://bit.ly/ProfDaveMaths Biology Tutorials: http://bit.ly/ProfDaveBio American History Tutorials: http://bit.ly/ProfDaveAmericanHistory
Views: 209512 Professor Dave Explains
Covalent Bonding in Water, Methane, Ammonia & Hydrogen Fluoride | Chemistry for All | FuseSchool
 
05:16
In this video we will look at covalent bonds in methane, ammonia, water and hydrogen fluoride. They are small, covalently-bonded molecules. The atoms within them share electrons because they have half full or more than half full valence shells of electrons: they are non-metals. Methane is a fuel, ammonia is used in household cleaners, water is a drink and the essence of life, and hydrogen fluoride is used to etch glass. The bonding in methane, ammonia, water and hydrogen fluoride shows a pattern: methane is carbon bonded to four hydrogen atoms; ammonia is nitrogen bonded to three hydrogen atoms; water is oxygen bonded to two hydrogen atoms, and hydrogen fluoride is fluorine bonded to just one hydrogen atom. Carbon, nitrogen, oxygen and fluorine appear in the periodic table in this order, moving along the second row from left to right. Carbon has four out of eight electrons in its outer shell, so makes four covalent bonds. Nitrogen has five out of eight electrons in its outer shell, so can make three covalent bonds to make the shell full. Oxygen has 6 electrons in its outer shell. It can bond with two hydrogen atoms to share 2 more electrons. It now has a full outer shell of 8 electrons. Ammonia has two electrons, called a lone pair of electrons, occupying the fourth position. These electrons take up space. Because electrons are negatively charged, lone pairs repel bonds even more strongly than bonds repel each other. This makes ammonia less symmetric than methane. The water molecule is bent in shape. Oxygen has two lone pairs. Negatively charged lone pairs are slightly attracted to the hydrogen atoms, so there is a weak attraction between molecules. Forces between molecules are a little stronger in water than in ammonia or methane. Water is liquid at room temperature and pressure, whilst ammonia a gas that is easily liquefied, and methane is a gas. Intermolecular forces are normally very weak in covalent compounds, but in water they are just strong enough to keep it liquid. A bit more energy is needed to overcome these forces and boil it. If water were not a liquid, life as we know it would be completely different! Ethanol contains carbon and oxygen bonding. The carbon atoms always form four bonds and the oxygen forms two. Remember, carbon forms 4 bonds, nitrogen forms 3 bonds and has one lone pair of electrons, and oxygen forms two bonds and looks bent. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind FuseSchool. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Chemical Bonding - ionic, covalent and hydrogen bonds - The Chemical Level of Organization
 
05:07
Install Tubebuddy :) https://www.tubebuddy.com/YTpromotion Thanks for watching :) If you would like to join freedom network, please click on my refferal link! https://www.freedom.tm/via/ytkabix10 Connect me on Linkedin if you'd like www.linkedin.com/in/xkabix
Views: 25828 Kabi
Covalent Bonding of Hydrogen, Oxygen & Nitrogen | Chemistry for All | The Fuse School
 
03:25
Learn the basics about the covalent bonding of hydrogen, oxygen and nitrogen as a part of the overall topic of properties of matter. The noble gas structure and covalent bonding is also discussed. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Water: A Polar Molecule
 
08:37
Water: A Polar Molecule In this video Paul Andersen explains how the polarity of water makes life on the planet possible. Oxygen is highly electronegative and pulls the electrons closely creating a partial negative charge. The polarity of water (and the corresponding hydrogen bonds) create cohesion, adhesion, capillary action, high specific heat, and a universally good solvent. Do you speak another language? Help me translate my videos: http://www.bozemanscience.com/translations/ Music Attribution Title: String Theory Artist: Herman Jolly http://sunsetvalley.bandcamp.com/track/string-theory All of the images are licensed under creative commons and public domain licensing: Adblocker. English: Table of Electronegatives, March 24, 2013. Own work. http://commons.wikimedia.org/wiki/File:Electronegative.jpg. Blacus, Victor. Two Phases (water and Oil) in the Same State of Aggregation (liquid)., September 2010. Victor Blacus. http://commons.wikimedia.org/wiki/File:Water_and_oil.jpg. "File:Blue Linckia Starfish.JPG." Wikipedia, the Free Encyclopedia. Accessed February 28, 2014. http://en.wikipedia.org/wiki/File:Blue_Linckia_Starfish.JPG. "File:Bozeman MT Areal.jpg." Wikipedia, the Free Encyclopedia. Accessed February 27, 2014. http://en.wikipedia.org/wiki/File:Bozeman_MT_areal.jpg. "File:Downtown-Seattle.JPG." Wikipedia, the Free Encyclopedia. Accessed February 27, 2014. http://en.wikipedia.org/wiki/File:Downtown-Seattle.JPG. "File:Hex ice.GIF." Wikipedia, the Free Encyclopedia. Accessed February 27, 2014. http://en.wikipedia.org/wiki/File:Hex_ice.GIF. "File:Surface Tension March 2009-3.jpg." Wikipedia, the Free Encyclopedia. Accessed February 27, 2014. http://en.wikipedia.org/wiki/File:Surface_tension_March_2009-3.jpg. "File:Water-Elpot-Transparent-3D-Balls.png." Wikipedia, the Free Encyclopedia. Accessed February 27, 2014. http://en.wikipedia.org/wiki/File:Water-elpot-transparent-3D-balls.png. H'arnet. Français : Niveau D'un Liquide Dans Un Ensemble de Tubes Capillaires Par Rapport Au Niveau de La Surface Libre Du Liquide Dans Des Tubes de Section Ne Faisant Pas Intervenir La Capillarité Appartenant Tous À Un Même Système de Vases Communicants., August 17, 2008. Own work. http://commons.wikimedia.org/wiki/File:Capillarit%C3%A9.PNG. Jynto. Space-Filling Model of the Allolactose Molecule, a Disaccharide Similar to Lactose., June 9, 2011. Own work This chemical image was created with Discovery Studio Visualizer. http://commons.wikimedia.org/wiki/File:Allolactose-3D-spacefill.png. ———. Space-Filling Model of the Allolactose Molecule, a Disaccharide Similar to Lactose., June 9, 2011. Own work This chemical image was created with Discovery Studio Visualizer. http://commons.wikimedia.org/wiki/File:Allolactose-3D-spacefill.png. Kdv2754. English: A Ball and Stick Model of a Triglyceride Fat., September 31, 2008. Own work. http://commons.wikimedia.org/wiki/File:Triglyceride_ballandstick.GIF. Melgar, Michael. A Drop of Water Frozen by Flash, March 15, 2007. english wikipedia. http://commons.wikimedia.org/wiki/File:Michael_Melgar_LiquidArt_resize_droplet.jpg. MesserWoland. Deutsch: Kapillarität Am Beispiel von Wasser Und QuecksilberEnglish: CapillarityNederlands: CapillariteitTürkçe: Kılcallık, November 9, 2006. own work created in Inkscape, based on the graphics by Daniel Stiefelmaier. http://commons.wikimedia.org/wiki/File:Capillarity.svg. NASA. English: Astronaut Clayton Anderson Watches as a Water Bubble Floats in the Middeck of Space Shuttle Discovery during the STS-131 Mission. Note That His Image in the Bubble Is Upside down Because the Bubble Refracted the Light., April 12, 2010. www.nasa.gov : HTML : JPG. http://commons.wikimedia.org/wiki/File:Clayton_Anderson_zero_g_edit.jpg. NASA/JPL-Caltech. English: This Artist's Concept Shows a Simulated View from the Surface of Jupiter's Moon Europa. Europa's Potentially Rough, Icy Surface, Tinged with Reddish Areas That Scientists Hope to Learn More About, Can Be Seen in the Foreground. The Giant Planet Jupiter Looms over the Horizon., August 6, 2013. http://www.nasa.gov/centers/jpl/multimedia/pia17043.html#.UgLCUuig5w0. http://commons.wikimedia.org/wiki/File:View_from_Europa%27s_Surface_(Artist%27s_Concept).jpg. Pallbo. English: Image of Sugarcubes Isolated on Black., November 3, 2007. Own work. http://commons.wikimedia.org/wiki/File:Sugarcubes.jpg. Riccio. Italiano: Molecole D'acqua Con Evidenziati I Legami a Idrogeno Ma Non I Momenti Di Dipolo)., January 4, 2014. Own work. http://commons.wikimedia.org/wiki/File:Molecole_d%27acqua.png. "Salts & Solubility." PhET. Accessed February 27, 2014. https://phet.colorado.edu/en/simulation/soluble-salts.
Views: 333402 Bozeman Science
Polar Covalent Bonds The Water Love Story
 
09:49
This video shows how oxygen and hydrogen atoms form polar covalent bonds to form water. The polar nature of water is described.
Views: 32380 szern100
Why is water a polar molecule and a bent shape? High school chemistry
 
02:47
This video of water molecule is a revised version of the earlier video "Why is water a polar molecule". https://www.youtube.com/edit?o=U&video_id=6w9t20p51uc This version explains both the polar covalent bond and the bent shape of the molecule - which are the reasons for the polarity in water. =============== explaination ===========--- The water molecule is a polar molecule due to the (1) unequal sharing of electrons in the bonds and also the (2) bent shape of the molecule. ***** The shape of the molecule is an important factor why water is polar. If the bond angle is set to 180º (linear shape), the whole molecule will be non-polar. But the shape of water molecule is BENT with an angle of about 105°, so the forces are distributed unequally and the forces cannot cancel out ******** (Please note that this video is created to help you visualize the concept of why water is a polar molecule. It does not represent how electrons actually travel - please read Heisenberg's Uncertainty Theory. Also, the shape of a water molecule is a tetrahedral geometry and you have to visualize in 3d how the bonds are formed.) Why is water a polar molecule? Water is a polar molecule because one side is positively charged and one side is negatively charged. Oxygen has 6 valence electrons and hydrogen has 1. Oxygen combines with 2 hydrogens in order to make 1 water molecule. Thus, oxygen would have 8 valence electrons as a result of the bonding and hydrogen would have 2. The water molecule fulfills the octet rule. However, oxygen attracts electrons more strongly than hydrogen. This causes the electrons to move closer to oxygen. Because of this, the oxygen ends up having a slightly negative charge and the hydrogen atom ends up with a slightly positive charge. A water molecular has a polar covalent bond. This is called a separation of charges, one end of the molecule is slightly negatively charged and the other end is slightly positively charged. Polarity means having electricity charge and that's why the water molecular is said to be a polar molecule. chemistry, molecules, polar covalent bonds, visual learning, visual science, high school, college chemistry refresher, water molecule Website: https://viziscience.com ©Copyright Meerwebs LLC, Viziscience.com Chemistry concept videos for high school & secondary school students
Views: 4516 Viziscience
Covalent and Hydrogen Bonds
 
07:45
This Human Anatomy and Physiology video teaches what polar, ionic, and non-polar covalent bonds are and what hydrogen bonds are.
Water: A simple covalent substance with hydrogen bonds acting between molecules.
 
00:35
Highly Recommended - Top Tutors for All Subjects at All Levels here: https://spires.co/franklychemistry This short flash animation takes you down to a millionth of a millimetre to where you can see how water molecules behave. If water is colled to 0 Celsius it freezes. At that point the molecules have sufficiently low kinetic energy for the hydrogen bonds to hold the molecules together permanently.
Views: 894 FranklyChemistry
Polar Covalent Bonds
 
04:58
Polar covalent bonds result from eneven sharing of electrons. Learn how to predict if a bond will be polar or nonpolar in this video.
Views: 137413 The Science Classroom
Polar Bonds and Molecules
 
03:36
Learn about what makes polar bonds polar and how intermolecular forces like hydrogen bonding occur.
Views: 36981 Teacher's Pet
Polar Covalent Bonding
 
00:52
Follow us at: https://plus.google.com/+tutorvista/ Check us out at http://chemistry.tutorvista.com/organic-chemistry/polar-covalent-bond.html Polar Covalent Bond The polar covalent bond, called a polar bond for short, is a variation on the standard covalent bond. It is defined by a difference in electronegativity values of 0.4 or greater, the meaning of which shall be made clear below. All covalent bonds are polar to some extent unless the bond is between two atoms of the same element. It is best to start with a review of the standard covalent bond. This is the sharing of electrons between two elements in order to have 8 electrons in the outer shell. The only exception to this is Hydrogen, which is stable with 2 electrons in its outer shell. The structure of each element gives it a different electronegativity value. This value is effectively the strength of the pull of that atom's nucleus on the electrons around it. The higher the value the greater the pull. A covalent bond is electrons moving around two atoms; they are being shared. It is the difference between the electronegativity values that determines which atom gets the larger share of the electron's time. If the electrons spend more of their time around one atom out of the pair then that region will have more negative charge than the other atom. Carbon to Carbon Bond The first example is the standard Carbon to Carbon bond such as occurs in the alkane molecules. We are just considering the bond that these two atoms share without regard for any other bonds that this pair of atoms may be involved in. First we can draw the two atoms as shown below. The pair of electrons that form the bond are drawn between them. The values written below the atoms are from the electronegativities table. The difference is calculated which in this case is zero. A polar covalent bond occurs every time Hydrogen bonds with Nitrogen, Oxygen or Fluorine as these are the three elements with the highest electronegativity values. They all have a difference of 0.9 or greater with Hydrogen. These bonds are called polar because of the different charges. These act like magnets and so polar molecules are pulled toward each other, with opposite charges attracting. The polar covalent bond is commonplace. Water is a liquid at room temperature because of these bonds. Ammonia (NH3) dissolves readily in water because of these bonds. This model even explains why water expands as it freezes. A polar covalent bond involving Hydrogen with any of the three most electronegative elements of Nitrogen, Oxygen and Fluorine is especially strong and is called a Hydrogen bond. Please like our facebook page http://www.facebook.com/tutorvista
Views: 52550 TutorVista
Chemistry of energy,   covalent bonds.   hydrogen bonds, water and solubility, and  catalysts
 
01:30:32
This lecture takes you through some applications of chemistry including some covalent bonding, hydrogen bonding and polarity, solubility, and the energy of chemical reactions including the concept of catalysts
Views: 165 Dr Greg
Ionic and covalent bonding example
 
01:29
Sodium and chlorine are elements that bound ionically creating sodium chloride salt. Hydrogen and oxygen are elements that create water in covalent bonding.
Views: 192955 kosasihiskandarsjah
Hydrogen Covalent Bond (Loop)  3d Blender Animation
 
00:45
MORE INFORMATION---Av hydrogen bond is the attractive interaction of a hydrogen atom with an electronegative atom, such as nitrogen, oxygen or fluorine, that comes from another molecule or chemical group. The hydrogen must be covalently bonded to another electronegative atom to create the bond. These bonds can occur between molecules (intermolecularly), or within different parts of a single molecule (intramolecularly).[2] The hydrogen bond (5 to 30 kJ/mole) is stronger than a van der Waals interaction, but weaker than covalent or ionic bonds. This type of bond occurs in both inorganic molecules such as water and organic molecules such as DNA.Intermolecular hydrogen bonding is responsible for the high boiling point of water (100 °C) compared to the other group 16 hydrides that have no hydrogen bonds. Intramolecular hydrogen bonding is partly responsible for the secondary, tertiary, and quaternary structures of proteins and nucleic acids. It also plays an important role in the structure of polymers, both synthetic and natural. A hydrogen atom attached to a relatively electronegative atom is a hydrogen bond donor.[5] This electronegative atom is usually fluorine, oxygen, or nitrogen. An electronegative atom such as fluorine, oxygen, or nitrogen is a hydrogen bond acceptor, regardless of whether it is bonded to a hydrogen atom or not. An example of a hydrogen bond donor is ethanol, which has a hydrogen bonded to oxygen; an example of a hydrogen bond acceptor which does not have a hydrogen atom bonded to it is the oxygen atom on diethyl ether.xamples of hydrogen bond donating (donors) and hydrogen bond accepting groups (acceptors) Carboxylic acids often form dimers in vapor phase. A hydrogen attached to carbon can also participate in hydrogen bonding when the carbon atom is bound to electronegative atoms, as is the case in chloroform, CHCl3. The electronegative atom attracts the electron cloud from around the hydrogen nucleus and, by decentralizing the cloud, leaves the atom with a positive partial charge. Because of the small size of hydrogen relative to other atoms and molecules, the resulting charge, though only partial, represents a large charge density. A hydrogen bond results when this strong positive charge density attracts a lone pair of electrons on another heteroatom, which becomes the hydrogen-bond Acceptor.The hydrogen bond is often described as an electrostatic dipole-dipole interaction. However, it also has some features of covalent bonding: it is directional and strong, produces interatomic distances shorter than sum of van der Waals radii, and usually involves a limited number of interaction partners, which can be interpreted as a type of valence. These covalent features are more substantial when acceptors bind hydrogens from more electronegative donors. The partially covalent nature of a hydrogen bond raises the following questions: "To which molecule or atom does the hydrogen nucleus belong?" and "Which should be labeled 'donor' and which 'acceptor'?" Usually, this is simple to determine on the basis of interatomic distances in the X−H...Y system: X−H distance is typically ≈110 pm, whereas H...Y distance is ≈160 to 200 pm. Liquids that display hydrogen bonding are called associated liquids.
Views: 20595 Animation Devastation
Don't Make this Mistake with Hydrogen Bonding!
 
03:10
To see all my Chemistry videos, check out http://socratic.org/chemistry Here, I talk about the BIGGEST, most COMMON mistake people make with Hydrogen bonding. Watch this video so you never make this mistake!
Views: 34018 Tyler DeWitt
Chemistry 9.1 Properties of Water from Hydrogen Bonding
 
06:18
Why does Ice float? This lesson looks at the expansion of ice, as well as other properties of water, from a molecular perspective and intermolecular attractions.
Views: 13752 IsaacsTEACH
Hydrogen Bonding Video
 
00:54
This is a very important concept for understanding biology. It is what keeps your DNA strands in a double helix.
Views: 178088 mtchemers
Chemical Bonding Introduction: Hydrogen Molecule, Covalent Bond & Noble Gases
 
07:21
Chemical bonding introduction video shows how covalent bond means 2 hydrogen atoms can stick together to form a hydrogen molecule, H2. The video also explains why helium cannot form bonds and hence is called a noble gas. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript: Let's do a thought experiment. Imagine a box filled with hydrogen atoms. Like billiard balls on a pool table, atoms actually move, and they do it in straight lines until they hit something … like another hydrogen atom. Oh! See that? They stuck together. They’re not separate hydrogen atoms any more, but a pair of hydrogen atoms moving together. There goes another pair. 4.1 When atoms join up like this, scientists call it a molecule. And they call the join between them a chemical bond. Here comes another hydrogen atom crashing into the hydrogen molecule. But this time it doesn’t stick. Instead it just bounces off. Hydrogen atoms bond once, and that’s it. They’re just like that. Pretty quickly all the hydrogen atoms will collide and pair off into molecules. They will keep hitting each other, but they'll just bounce off. Scientists like to have a shorthand way of writing this molecule thingi. Here’s one way to show it, with the hydrogen symbols joined by a stick to show the chemical bond between the atoms. Another way is to write H2, with the little 2 after the H and a bit lower. A number written this way is called a subscript. What do you think the 2 stands for? It counts the number of hydrogen atoms in the molecule. Easy, heh! So when we have a balloon filled with hydrogen gas, it really contains trillions of trillions of H2 molecules. Let's do another thought experiment. We'll go back to our box filled with hydrogen atoms, but this time put an oxygen atom in there too. When a hydrogen atom crashes into an oxygen atom, they stick together. But wait, when another hydrogen atom hits, it also sticks to the oxygen. What about a third hydrogen atom? No, that’s if for oxygen. It can only make 2 bonds and then it’s done.
Views: 119579 AtomicSchool
Hydrogen Bonds
 
05:24
Watch more videos on http://www.brightstorm.com/science/biology SUBSCRIBE FOR All OUR VIDEOS! https://www.youtube.com/subscription_center?add_user=brightstorm2 VISIT BRIGHTSTORM.com FOR TONS OF VIDEO TUTORIALS AND OTHER FEATURES! http://www.brightstorm.com/ LET'S CONNECT! Facebook ► https://www.facebook.com/brightstorm Pinterest ► https://www.pinterest.com/brightstorm/ Google+ ► https://plus.google.com/+brightstorm/ Twitter ► https://twitter.com/brightstorm_ Brightstorm website ► https://www.brightstorm.com/
Views: 124553 Brightstorm
Chemical Bonding - Ionic vs. Covalent Bonds
 
02:15
This two minute animation describes the Octet Rule and explains the difference between ionic and covalent bonds. Find more free tutorials, videos and readings for the science classroom at ricochetscience.com
Views: 209542 RicochetScience
Ionic and Covalent Bonding - Chemistry
 
21:57
This chemistry video tutorial provides a basic introduction into ionic and covalent bonding. It explains the difference between polar covalent bonds and nonpolar covalent bonds. Ionic bonds exist between metals and nonmetals and are made up of ions with positive and negative charges. Covalent bonds involve a sharing of electrons where as ionic bonds are created by a transfer of electrons. What Is The Difference Between Atoms, Molecules & Ions? https://www.youtube.com/watch?v=pSJeMJaCkVU Calculating The Number of Protons, Neutrons, and Electrons: https://www.youtube.com/watch?v=65dDZulPhtg How To Balance Chemical Equations: https://www.youtube.com/watch?v=iUARzSxcKzk
Covalent Bonding in Carbon Dioxide | Chemistry for All | FuseSchool
 
03:54
Carbon dioxide is a product of one of the most important chemical reactions in the world: combustion. Combustion is how a lot of people in the world heat their homes and power their cars. It also unfortunately contributes to the greenhouse effect and global warming. The carbon dioxide molecule is formed from one carbon atom and two oxygens. As an element, carbon only has 4 outer shell electrons and oxygen 6. Double covalent bonds form between the atoms, where two electrons from each atom are shared making 4 bonding electrons in total. The two groups of bonding electrons in carbon dioxide repel each other and this keeps the oxygen atoms as far away from each other as possible. Carbon dioxide is less reactive than water because it has two bonds with each oxygen. This means you need a lot more energy to break the atoms apart. Carbon dioxide's strong double bonds make it very stable and so whenever there are stray carbon and oxygen atoms flying about, they love to get together and form carbon dioxide. Like water, the bonds in carbon dioxide are POLAR COVALENT, making the carbon atom delta positive and the oxygens delta negative. Although, unlike water, carbon dioxide is not a polar molecule overall. SUBSCRIBE to the FuseSchool YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. VISIT us at www.fuseschool.org, where all of our videos are carefully organised into topics and specific orders, and to see what else we have on offer. Comment, like and share with other learners. You can both ask and answer questions, and teachers will get back to you. These videos can be used in a flipped classroom model or as a revision aid. Find all of our Chemistry videos here: https://www.youtube.com/watch?v=cRnpKjHpFyg&list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Find all of our Biology videos here: https://www.youtube.com/watch?v=tjkHzEVcyrE&list=PLW0gavSzhMlQYSpKryVcEr3ERup5SxHl0 Find all of our Maths videos here: https://www.youtube.com/watch?v=hJq_cdz_L00&list=PLW0gavSzhMlTyWKCgW1616v3fIywogoZQ Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the FuseSchool platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: in[email protected]
Why is water a polar molecule? High school chemistry.
 
01:44
GET MORE AMAZING VIDEOS: https://viziscience.com Watch the new version of this video - https://www.youtube.com/watch?v=DvIaDY6PLHQ&feature=youtu.be The water molecule is a polar molecule due to the **unequal sharing of electrons** in the bonds and also the ****bent shape***** of the molecule. ***** The shape of the molecule is an important factor why water is polar. If the bond angle is set to 180º, even if the bonds are polar, the whole molecule will still be non-polar. But the shape of water molecule is BENT with an angle of about 105°, so that's why the forces are distributed unequally and the forces cannot cancel out ******** (Please note that this video is created to help you visualize the concept of why water is a polar molecule. It does not represent how electrons actually travel - please read Heisenberg's Uncertainty Theory. Also, the shape of a water molecule is a tetrahedral geometry and you have to visualize in 3d how the bonds are formed. Last of all, an electron could be thought of as a wave. So, instead of thinking of an electron as a little orange dot, think of it as a force spreading over a volume, taking the shape of the orbital of its energy level.) Why is water a polar molecule? Water is a polar molecule because one side is positively charged and one side is negatively charged. Oxygen has 6 valence electrons and hydrogen has 1. Oxygen combines with 2 hydrogens in order to make 1 water molecule. Thus, oxygen would have 8 valence electrons as a result of the bonding and hydrogen would have 2. The water molecule fulfills the octet rule. However, oxygen attracts electrons more strongly than hydrogen. This causes the electrons to move closer to oxygen. Because of this, the oxygen ends up having a slightly negative charge and the hydrogen atom ends up with a slightly positive charge. A water molecular has a polar covalent bond. This is called a separation of charges, one end of the molecule is slightly negatively charged and the other end is slightly positively charged. Polarity means having electricity charge and that's why the water molecular is said to be a polar molecule.
Views: 33722 Viziscience
Covalent Bonding - Drawing & Properties
 
16:14
Practice covalent compounds (molecular compounds): • H₂O Water (dihydrogen monoxide) • O₂ Oxygen • CO₂ Carbon dioxide • HF Hydrogen fluoride • CH₄ Methane • PCl₃ Phosphorous chloride • H₂S Hydrogen sulfide • CCl₄ Tetrachloromethane • NH₃ Ammonia • CS₂ Carbon disulphide
Views: 686 Angles and Acid
COVALENT BOND | SCIENCE | CLASS 10th | SINGLE/DOUBLE/TRIPLE COVALENT BOND | BY VEDIKA MA'AM
 
30:57
IN THIS VIDEO WE WILL UNDERSTAND 1. COVALENT BOND 2. WHAT IS BOND 3. TYPES OF COVALENT BOND 4.SINGLE COVALENT BOND 5. STRUCTURES OF EXAMPLES OF COMPOUNDS HAVING SINGLE COVALENT BOND 6. DOUBLE COVALENT BOND 7. STRUCTURES OF EXAMPLES OF COMPOUNDS HAVINGS DOUBLE COVALENT BONDS 8. TRIPLE COVALENT BONDS 9. STRUCTURES OF EXAMPLES OF COMPOUNDS HAVINGS TRIPLE COVALENT BONDS -------------------------OTHER KEYWORDS ----------------------------------- covalent bonds, covalent bonds and ionic bonds, covalent bonds crash course, covalent bonds song, covalent bonds lewis structure, covalent bonds caiiro, covalent bonds octet, covalent bonds of carbon, covalent bonds fuse, covalent bonds polar and nonpolar, covalent bonds and compounds, covalent bonds and octet rule, covalent bonds and polarity, covalent bonds and the periodic table, covalent bonds and molecular structure, covalent bonds and molecules, covalent bonds are, covalent bonds and noncovalent bonds, covalent bonds and water, covalent bonds bozeman, covalent bonds biochemistry, covalent bonds between sulfur and hydrogen, covalent bonds bbc bitesize, covalent bonds boiling point, covalent bonds bitesize, ionic bonds covalent bonds song, covalent bonds class 10, covalent bonds carbon, covalent bonds chemical formula, covalent bonds can be polar or nonpolar, covalent bonds can be break by, covalent bonds caiiro mp3 download, covalent bonds chlorine, covalent bonds dancing queen, covalent bonds definition, covalent bonds dna, covalent bonds diagram, caiiro covalent bonds download, how do covalent bonds form, polar covalent bonds tyler dewitt, how do covalent bonds work, do covalent bonds make ions, do covalent bonds have electrostatic attraction, how to do covalent bonds lewis structure, how to do covalent bonds, covalent bonds explained simply, covalent bonds explanation, covalent bonds equations, covalent bonds electrostatic attraction, polar covalent bonds electronegativity, polar covalent bonds explained, nonpolar covalent bonds examples, covalent bonds form when, covalent bonds formation, covalent bonds for oxygen, covalent bonds freesciencelessons, chemical formula covalent bonds, covalent bonds gizmo, covalent bonds gizmo answer key, covalent bonds gizmo worksheet answers, covalent bonds gcse, giant covalent bonds, covalent and ionic bonds gcse, covalent bonds hydrogen, covalent and ionic bonds in hindi, how covalent bonds are formed, covalent bonds in hindi, covalent bonds ionic bonds, covalent bonds ionic bonds and hydrogen bonds, covalent bonds in water, covalent bonds in lewis structures, covalent bonds in carbon, covalent bonds in dna, covalent bonds in the human body, covalent bonds in nitrogen, covalent bonds in h2o, 21 jump street covalent bonds, covalent bonds link a water molecule, covalent bonds lewis dot structure, covalent bonds middle school, covalent bonds more stable than ionic, covalent bonds made easy, covalent bonds melting point, covalent bonds meaning, multiple covalent bonds, molecules and covalent bonds, covalent and molecular bonds, covalent bonds naming, covalent bonds nomenclature, covalent bonds nitrogen, nonpolar covalent bonds, non covalent bonds, covalent and noncovalent bonds, covalent and ionic bonds naming, network covalent bonds, covalent bonds oxygen, covalent bonds on the periodic table, covalent bonds o2, covalent bonds of hydrogen, covalent bonds of carbon atom, types of covalent bonds, formation of covalent bonds, polarity of covalent bonds, covalent bonds polar vs nonpolar, covalent bonds periodic table, covalent bonds practice, covalent bonds polar, polar covalent bonds and electronegativity, polar covalent bonds in water, covalent bonds strength, covalent bonds stronger than ionic bonds, covalent bonds simple explanation, covalent bonds structure, lewis structure covalent bonds, amoeba sisters covalent bonds, science covalent bonds, understanding covalent bonds, covalent and ionic bonds in urdu, understanding polar covalent bonds, covalent bonds video, covalent bonds vs ionic bonds vs hydrogen bonds, covalent bonds vs ionic bonds strength, ionic v covalent bonds, covalent vs ionic bonds beverly biology, ions vs covalent bonds, ionic versus covalent bonds, covalent bonds with carbon, covalent bonds water, covalent bonds with hydrogen, covalent bonds with nitrogen, writing covalent bonds, why do covalent bonds form, covalent bonds youtube science covalent bonds science covalent bonds CLASS 10
Ever Studied Hydrogen Bonding with Pizzas?
 
06:27
Let’s talk about the electronegativity and charge density of Nitrogen and Chlorine and also how Hydrogen bonding influences the corresponding atoms… Sounds serious? Then, let’s look at the same but with a twist. Let’s try to understand them by using a pizza! We at Byju's Classes strongly believe that a spirit of learning and understanding can only be inculcated when the student is curious, and that curiosity can be brought about by creative and effective teaching. It is this approach that makes our lectures so successful and gives our students an edge over their counterparts. Our website- http://www.byjus.com/ Download our app on android- https://goo.gl/5Uz70E Download our app on an Apple device- https://goo.gl/2mLi1I
Views: 41489 BYJU'S
20-Second Story about Hydrogen Bonding
 
01:41
This is a simple language explanation of hydrogen bonding
Views: 226333 EtuSchule
Hydrogen bonding (Inter & Intra) -IIT JEE Chemistry
 
07:21
Types of Hydrogen Bonding - Inter as well as Intra
Polar Molecules Tutorial: How to determine polarity in a molecule
 
10:36
This video looks at how to determine polarity in a molecule by understanding how the bond polarities, molecule shape, and outside atoms influence polarity using bond polarity vector addition. This includes a flow chart that guides you through the various decisions needed to determine if a molecule is polar or not. Wikipedia 1/1/2018: In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole or multipole moment. Polar molecules must contain polar bonds due to a difference in electronegativity between the bonded atoms. A polar molecule with two or more polar bonds must have a geometry which is asymmetric in at least one direction, so that the bond dipoles do not cancel each other. While the molecules can be described as "polar covalent", "nonpolar covalent", or "ionic", this is often a relative term, with one molecule simply being more polar or more nonpolar than another. However, the following properties are typical of such molecules. A molecule is composed of one or more chemical bonds between molecular orbitals of different atoms. A molecule may be polar either as a result of polar bonds due to differences in electronegativity as described above, or as a result of an asymmetric arrangement of nonpolar covalent bonds and non-bonding pairs of electrons known as a full molecular orbital. Polar molecules[edit] The water molecule is made up of oxygen and hydrogen, with respective electronegativities of 3.44 and 2.20. The dipoles from each of the two bonds (red arrows) add together to make the overall molecule polar. A polar molecule has a net dipole as a result of the opposing charges (i.e. having partial positive and partial negative charges) from polar bonds arranged asymmetrically. Water (H2O) is an example of a polar molecule since it has a slight positive charge on one side and a slight negative charge on the other. The dipoles do not cancel out resulting in a net dipole. Due to the polar nature of the water molecule itself, polar molecules are generally able to dissolve in water. Other examples include sugars (like sucrose), which have many polar oxygen–hydrogen (−OH) groups and are overall highly polar. If the bond dipole moments of the molecule do not cancel, the molecule is polar. For example, the water molecule (H2O) contains two polar O−H bonds in a bent (nonlinear) geometry. The bond dipole moments do not cancel, so that the molecule forms a molecular dipole with its negative pole at the oxygen and its positive pole midway between the two hydrogen atoms. In the figure each bond joins the central O atom with a negative charge (red) to an H atom with a positive charge (blue). The hydrogen fluoride, HF, molecule is polar by virtue of polar covalent bonds – in the covalent bond electrons are displaced toward the more electronegative fluorine atom. Ammonia, NH3, molecule the three N−H bonds have only a slight polarity (toward the more electronegative nitrogen atom). The molecule has two lone electrons in an orbital, that points towards the fourth apex of the approximate tetrahedron, (VSEPR). This orbital is not participating in covalent bonding; it is electron-rich, which results in a powerful dipole across the whole ammonia molecule. Resonance Lewis structures of the ozone molecule In ozone (O3) molecules, the two O−O bonds are nonpolar (there is no electronegativity difference between atoms of the same element). However, the distribution of other electrons is uneven – since the central atom has to share electrons with two other atoms, but each of the outer atoms has to share electrons with only one other atom, the central atom is more deprived of electrons than the others (the central atom has a formal charge of +1, while the outer atoms each have a formal charge of −​1⁄2). Since the molecule has a bent geometry, the result is a dipole across the whole ozone molecule. When comparing a polar and nonpolar molecule with similar molar masses, the polar molecule in general has a higher boiling point, because the dipole–dipole interaction between polar molecules results in stronger intermolecular attractions. One common form of polar interaction is the hydrogen bond, which is also known as the H-bond. For example, water forms H-bonds and has a molar mass M = 18 and a boiling point of +100 °C, compared to nonpolar methane with M = 16 and a boiling point of –161 °C. Nonpolar molecules[edit] A molecule may be nonpolar either when there is an equal sharing of electrons between the two atoms of a diatomic molecule or because of the symmetrical arrangement of polar bonds in a more complex molecule. Not every molecule with polar bonds is a polar molecule. Carbon dioxide (CO2) has two polar C=O bonds, but the geometry of CO2 is linear so that the two bond dipole moments cancel and there is no net molecular dipole moment; the molecule is nonpolar.
Views: 105876 Crash Chemistry Academy
Hydrogen Bonding - AS Chemistry
 
10:40
In this video I take a look at the idea of Intermolecular Hydrogen Bonding.
Views: 10166 A Level Scientist
Hydrogen Bonding
 
03:24
A brief video on hydrogen bonding
Views: 24171 Stout-Hearted Hounds
Hydrogen bonding
 
08:28
Hydrogen bonding. I'm not sure how much detail you want, but here goes... :)
Views: 51522 Janet Coonce

Polizeiwissenschaft newsletter formats
Papers writing service
How to start a cover letter when you don't know the recipient
Application letters in nigeria what is bta
No paper writing service